nLab Yang-Mills-Higgs equations

Contents

Context

Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Differential cohomology

Contents

Idea

The Yang-Mills-Higgs equations (or YMH equations) arise from a generalization of the Yang-Mills action functional with a section, which in physics represents the Higgs field.

Definition

In the following, consider

and write

If the base space is not compact, then in the following the gauge field AΩ conn 1(P;𝔤)A \in \Omega^1_{conn}(P;\mathfrak{g}) and the Higgs field ΦΓ (Ad P)\Phi \in \Gamma^\infty(Ad_P) are required to vanish at infinity (cf. Taubes 1982a, Equation (2.3)).

Action functional

The Yang-Mills-Higgs action functional (or YMH action functional) is given by:

(1)S YMH:Ω conn 1(P;𝔤)×Γ (Ad P) (A,Φ) S YMH(A,Φ) B(F A 2+d AΦ 2)dvol g. \begin{array}{ccc} \mathllap{ S_{YMH} \,\colon\, } \Omega^1_{conn}(P;\mathfrak{g}) \times \Gamma^\infty(Ad_P) &\longrightarrow& \mathbb{R} \\ \big(A, \Phi\big) &\mapsto& S_{YMH}(A,\Phi) \mathrlap{ \coloneqq \textstyle{\int_B} \big( \|F_A\|^2 + \|\mathrm{d}_A\Phi\|^2 \big) \mathrm{d}\vol_g \,. } \end{array}

(cf. Taubes 1982a, Equation (2.1))

Yang-Mills-Higgs equations and pairs

A pair consisting of a connection AΩ conn 1(P;𝔤)A\in\Omega^1_{conn}(P;\mathfrak{g}) and a section ΦΓ (B,Ad P)\Phi\in\Gamma^\infty(B,Ad_P) is called a Yang-Mills-Higgs pair (or YMH pair) if it is a critical point of the Yang-Mills-Higgs action functional (1), hence if:

ddtS YMH(α(t),φ(t))| t=0=0 \frac{\mathrm{d}}{\mathrm{d}t} S_{YMH}\big( \alpha(t), \varphi(t) \big)\vert_{t=0} \;=\; 0

for all pairs of smooth families

α:(ε,ε) Ω conn 1(P;𝔤) φ:(ε,ε) Γ (Ad P), \begin{array}{ccc} \mathllap{ \alpha\colon } (-\varepsilon, \varepsilon) & \longrightarrow & \Omega^1_{conn}(P;\mathfrak{g}) \\ \mathllap{ \varphi\colon } (-\varepsilon,\varepsilon) & \longrightarrow & \Gamma^\infty(Ad_P) \mathrlap{\,,} \end{array}

with α(0)=Aandφ(0)=Φ\alpha(0)=A and \varphi(0)=\Phi,

(where (ϵ,ϵ)(-\epsilon, \epsilon) \subset \mathbb{R} denotes an open ball around the origin of the real line).

This is the case iff the Euler-Lagrange equations of motion are satisfies, here called the Yang-Mills-Higgs equations (or YMH equations):

(2)d AF A+[Φ,d AΦ] = 0 d Ad AΦ = 0. \begin{array}{ccc} \mathrm{d}_A \star F_A + \star[\Phi,\mathrm{d}_A\Phi] &=& 0 \\ \mathrm{d}_A\star\mathrm{d}_A\Phi &=& 0 \mathrlap{\,.} \end{array}

(cf. Taubes 1982a, Equations (2.2a) and (2.2b), Taubes 1984, Equation (1), Taubes 1985, Equations (A.1.1a) and (A.1.1b), but beware that Taubes 1984, Equation (1) is missing the second Hodge star operator in the first Yang-Mills-Higgs equation.)

Furthermore, the following Bianchi identities hold:

d AF A = 0 d Ad AΦ+[Φ,F A] = 0 \begin{array}{ccc} \mathrm{d}_A F_A &=& 0 \\ \mathrm{d}_A\mathrm{d}_A\Phi +[\Phi,F_A] &=& 0 \end{array}

(cf. Taubes 1982a, Equations (2.2c) and (2.2d))

Using 2=(1) k(nk)\star^2=(-1)^{k(n-k)} (see there) and δ A=(1) n(k+1)+1d A\delta_A=(-1)^{n(k+1)+1}\star\mathrm{d}_A\star when applied to kk-forms, the first Yang-Mills-Higgs equation (2) is equivalent to:

δ AF A+[Φ,d AΦ]=0. \delta_A F_A + [\Phi,\mathrm{d}_A\Phi] \;=\; 0 \mathrlap{\,.}

and the second one to:

δ Ad AΦ=0,. \delta_A\mathrm{d}_A\Phi \;=\; 0 \mathrlap{,.}

Remark

For an abelian Lie group as structure group, its Lie algebra is also abelian and hence all Lie brackets vanish and the YMH equations (2) reduce to:

ddA = 0 ddΦ = 0. \begin{array}{ccc} \mathrm{d}\star\mathrm{d}A &=& 0 \\ \mathrm{d}\star\mathrm{d}\Phi &=& 0 \mathrlap{\,.} \end{array}

Properties

General

Essentially by definition:

Lemma

AΩ conn 1(P;𝔤)A\in\Omega^1_{conn}(P; \mathfrak{g}) is a Yang-Mills connection (a solution of the plain Yang-Mills equations) iff (A,0)Ω conn 1(P)×Γ (Ad P)(A,0)\in\Omega^1_{conn}(P)\times\Gamma^\infty(Ad_P) is a Yang-Mills-Higgs pair.

Relation to generalized Laplace equation

Let:

Δ Aδ Ad A+d Aδ A:Ω k(B,Ad(E))Ω k(B,Ad(E)) \Delta_A \;\coloneqq\; \delta_A\mathrm{d}_A + \mathrm{d}_A\delta_A \;\colon\; \Omega^k(B,\operatorname{Ad}(E)) \longrightarrow \Omega^k(B,\operatorname{Ad}(E))

be a generalized Laplace operator.

The Bianchi identity d AF A=0\mathrm{d}_A F_A=0 and the first Yang-Mills-Higgs equation δ AF A=[Φ,d AΦ]\delta_A F_A=-[\Phi,\mathrm{d}_A\Phi] combine to:

Δ AF A=d A[Φ,d AΦ]. \Delta_A F_A \;=\; -\mathrm{d}_A[\Phi,\mathrm{d}_A\Phi].

The trivial identity δ AΦ=0\delta_A\Phi=0 (since Φ\Phi is a 00-form whose degree cannot be lowered any further) and the second Yang-Mills-Higgs equation δ Ad AΦ=0\delta_A\mathrm{d}_A\Phi=0 combine to:

Δ AΦ=0. \Delta_A\Phi \;=\; 0 \mathrlap{\,.}

References

See also:

Last revised on August 21, 2025 at 20:14:53. See the history of this page for a list of all contributions to it.